Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.976
Filtrar
1.
Cell Commun Signal ; 22(1): 189, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38519981

RESUMO

The proinflammatory cytokines and arachidonic acid (AA)-derived eicosanoids play a key role in cartilage degeneration in osteoarthritis (OA). The lysophosphatidylcholine acyltransferase 3 (LPCAT3) preferentially incorporates AA into the membranes. Our recent studies showed that MALT1 [mucosa-associated lymphoid tissue lymphoma translocation protein 1]) plays a crucial role in propagating inflammatory signaling triggered by IL-1ß and other inflammatory mediators in endothelial cells. The present study shows that LPCAT3 expression was up-regulated in both human and mice articular cartilage of OA, and correlated with severity of OA. The IL-1ß-induces cell death via upregulation of LPCAT3, MMP3, ADAMTS5, and eicosanoids via MALT1. Gene silencing or pharmacological inhibition of LPCAT3 or MALT1 in chondrocytes and human cartilage explants notably suppressed the IL-1ß-induced cartilage catabolism through inhibition of expression of MMP3, ADAMTS5, and also secretion of cytokines and eicosanoids. Mechanistically, overexpression of MALT1 in chondrocytes significantly upregulated the expression of LPCAT3 along with MMP3 and ADAMTS5 via c-Myc. Inhibition of c-Myc suppressed the IL-1ß-MALT1-dependent upregulation of LPCAT3, MMP3 and ADAMTS5. Consistent with the in vitro data, pharmacological inhibition of MALT1 or gene silencing of LPCAT3 using siRNA-lipid nanoparticles suppressed the synovial articular cartilage erosion, pro-inflammatory cytokines, and eicosanoids such as PGE2, LTB4, and attenuated osteoarthritis induced by the destabilization of the medial meniscus in mice. Overall, our data reveal a previously unrecognized role of the MALT1-LPCAT3 axis in osteoarthritis. Targeting the MALT1-LPCAT3 pathway with MALT1 inhibitors or siRNA-liposomes of LPCAT3 may become an effective strategy to treat OA by suppressing eicosanoids, matrix-degrading enzymes, and proinflammatory cytokines.


Assuntos
Cartilagem Articular , Osteoartrite , Animais , Humanos , Camundongos , 1-Acilglicerofosfocolina O-Aciltransferase/metabolismo , 1-Acilglicerofosfocolina O-Aciltransferase/farmacologia , Cartilagem Articular/metabolismo , Cartilagem Articular/patologia , Células Cultivadas , Condrócitos/metabolismo , Citocinas/metabolismo , Eicosanoides/metabolismo , Eicosanoides/farmacologia , Eicosanoides/uso terapêutico , Células Endoteliais/metabolismo , Interleucina-1beta/metabolismo , Metaloproteinase 3 da Matriz/metabolismo , Metaloproteinase 3 da Matriz/farmacologia , Metaloproteinase 3 da Matriz/uso terapêutico , Proteína de Translocação 1 do Linfoma de Tecido Linfoide Associado à Mucosa/metabolismo , Osteoartrite/metabolismo , RNA Interferente Pequeno/metabolismo
2.
J Appl Biomed ; 22(1): 40-48, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38505969

RESUMO

BACKGROUND: Endoplasmic reticulum (ER) stress has been shown to play an important role in osteoarthritis (OA). OBJECTIVE: This study was aimed at assessing the relationship of endoplasmic reticulum (ER) stress-related glucose-regulated protein 78 (GRP78) and CCAAT/enhancer-binding protein homologous protein (CHOP) concentrations in the serum/synovial fluid (SF) with disease severity of primary knee osteoarthritis (pkOA). METHODS: Patients with pkOA together with healthy individuals were consecutively recruited from our hospital. The levels of GRP78 and CHOP in serum / SF were detected using enzyme-linked immunosorbent assay. The levels of IL-6 and MMP-3 were also examined. Radiographic progression of pkOA was evaluated based on Kellgren-Lawrence (K-L) grades. Receiver Operating Characteristic (ROC) curves were used to assess the diagnostic value of GRP78/CHOP levels with regard to K-L grades. The assessment of clinical severity was conducted using the visual analogue scale (VAS), Oxford knee score (OKS), and Lequesne algofunctional index (LAI). RESULTS: A total of 140 pkOA patients and 140 healthy individuals were included. Serum GRP78 and CHOP levels in pkOA patients were not significantly different from those in healthy individuals. The SF GRP78 and CHOP levels in healthy controls were not detected due to ethical reasons. Compared to those with K-L grade 2 and 3, the pkOA patients with K-L grade 4 had higher GRP78 and CHOP levels in the SF with statistical significance. In addition, the pkOA patients with K-L grade 3 exhibited drastically upregulated GRP78 and CHOP concentrations in the SF compared to those with K-L grade 2. Positive correlations of GRP78 and CHOP levels with K-L grades, IL-6, and MMP-3 levels in the SF were observed. ROC curve analysis indicated that both GRP78 and CHOP levels may act as decent indicators with regard to OA. GRP78 and CHOP concentrations in the SF were positively correlated with VAS/LAI score and negatively associated with OKS score. CONCLUSION: The study indicated that GRP78 and CHOP levels in the SF but not the serum were positively correlated with disease severity of pkOA.


Assuntos
Osteoartrite do Joelho , Humanos , Osteoartrite do Joelho/diagnóstico por imagem , Líquido Sinovial/química , Líquido Sinovial/metabolismo , Metaloproteinase 3 da Matriz/metabolismo , Estudos Transversais , Chaperona BiP do Retículo Endoplasmático , Interleucina-6/metabolismo , Biomarcadores/análise , Biomarcadores/metabolismo , Progressão da Doença
3.
In Vitro Cell Dev Biol Anim ; 60(3): 287-299, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38485818

RESUMO

The study aimed to investigate the effect of ginsenoside Rg1 on intervertebral disc degeneration (IVDD) in rats and IL-1ß-induced nucleus pulposus (NP) cells, and explore its underlying mechanism. Forty IVDD rat models were divided into the IVDD group, low-dose (L-Rg1) group (intraperitoneal injection of 20 mg/kg/d ginsenoside Rg1), medium-dose (M-Rg1) group (intraperitoneal injection of 40 mg/kg/d ginsenoside Rg1), and high-dose (H-Rg1) group (intraperitoneal injection of 80 mg/kg/d ginsenoside Rg1). The pathological change was observed by HE and safranin O-fast green staining. The expression of IL-1ß, IL-6, TNF-α, MMP3, aggrecan, and collagen II was detected. The expression of NF-κB p65 in IVD tissues was detected. Rat NP cells were induced by IL-1ß to simulate IVDD environment and divided into the control group, IL-1ß group, and 20, 50, and 100 µmol/L Rg1 groups. The cell proliferation activity, the apoptosis, and the expression of IL-6, TNF-α, MMP3, aggrecan, collagen II, and NF-κB pathway-related protein were detected. In IVDD rats, ginsenoside Rg1 improved the pathology of IVD tissues; suppressed the expression of IL-1ß, IL-6, TNF-α, aggrecan, and collagen II; and inhibited the expression of p-p65/p65 and nuclear translocation of p65, to alleviate the IVDD progression. In the IL-1ß-induced NP cells, ginsenoside Rg1 also improved the cell proliferation and inhibited the apoptosis and the expression of IL-6, TNF-α, aggrecan, collagen II, p-p65/p65, and IκK in a dose-dependent manner. Ginsenoside Rg1 alleviated IVDD in rats and inhibited apoptosis, inflammatory response, and ECM degradation in IL-1ß-induced NP cells. And Rg1 may exert its effect via inhibiting the activation of NF-κB signaling pathway.


Assuntos
Ginsenosídeos , Degeneração do Disco Intervertebral , Disco Intervertebral , Núcleo Pulposo , Doenças dos Roedores , Ratos , Animais , NF-kappa B/metabolismo , Degeneração do Disco Intervertebral/tratamento farmacológico , Degeneração do Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/patologia , Metaloproteinase 3 da Matriz/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Agrecanas/genética , Transdução de Sinais , Colágeno/farmacologia , Inflamação/patologia , Apoptose , Disco Intervertebral/metabolismo , Disco Intervertebral/patologia , Doenças dos Roedores/metabolismo , Doenças dos Roedores/patologia
4.
Theriogenology ; 218: 231-238, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38359561

RESUMO

Pregnancy course depends on the appropriate connection between the mother and the developing foetus. Pregnancy is completed when the placenta is timely expelled. Placental retention is one of the possible pregnancy complications. Extracellular matrix, including adhesive proteins and enzymes that can break down collagens, seems to be responsible for it. The aim of the present study was to examine the impact of one of the adhesive proteins - glycodelin (Gd) - on selected metalloproteinases degrading collagens (MMP2, MMP3, MMP7). Placental tissues from healthy pregnant cows collected during early-mid pregnancy (2nd month n = 7, 3rd month n = 8, 4th month n = 6) and in cows that properly released placenta (NR; n = 6) and cows with retained foetal membranes (R; n = 6) were experimental material. The concentrations of glycodelin and protein content of selected metalloproteinases were measured by ELISA in the maternal and foetal placental homogenates as well as in the culture of epithelial cells derived from the maternal part of the placenta. The presence of these protein molecules was confirmed by Western Blotting. In the bovine placenta, the concentrations of examined proteins exhibit significant changes during placental formation. Gd, MMP3 and MMP7 concentrations decrease with pregnancy progress (between the 2nd and 4th month), while MMP2 concentrations were on the same level in this period. During parturition, concentrations of Gd and MMP3 were significantly higher in the R group compared to the NR group. In parallel, MMP2 concentrations did not show significant differences between the groups (NR vs R), and MMP7 concentrations decreased significantly in the maternal part of the placenta in cows with retained foetal membranes (R). Obtained results show correlations between the gestational age and proteins' (Gd, MMP3, MMP7) concentration, both in the maternal and foetal part of the placenta.


Assuntos
Doenças dos Bovinos , Placenta Retida , Gravidez , Animais , Feminino , Bovinos , Placenta/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 3 da Matriz/metabolismo , Metaloproteinase 7 da Matriz/metabolismo , Glicodelina/metabolismo , Parto , Placenta Retida/veterinária , Placenta Retida/metabolismo , Proteínas/metabolismo , Membranas Extraembrionárias/metabolismo , Doenças dos Bovinos/metabolismo
5.
Biomed Pharmacother ; 171: 116116, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38181715

RESUMO

Fibrosis is a process of tissue repair that results in the slow creation of scar tissue to replace healthy tissue and can affect any tissue or organ. Its primary feature is the massive deposition of extracellular matrix (mainly collagen), eventually leading to tissue dysfunction and organ failure. The progression of fibrotic diseases has put a significant strain on global health and the economy, and as a result, there is an urgent need to find some new therapies. Previous studies have identified that inflammation, oxidative stress, some cytokines, and remodeling play a crucial role in fibrotic diseases and are essential avenues for treating fibrotic diseases. Among them, matrix metalloproteinases (MMPs) are considered the main targets for the treatment of fibrotic diseases since they are the primary driver involved in ECM degradation, and tissue inhibitors of metalloproteinases (TIMPs) are natural endogenous inhibitors of MMPs. Through previous studies, we found that MMP-9 is an essential target for treating fibrotic diseases. However, it is worth noting that MMP-9 plays a bidirectional regulatory role in different fibrotic diseases or different stages of the same fibrotic disease. Previously identified MMP-9 inhibitors, such as pirfenidone and nintedanib, suffer from some rather pronounced side effects, and therefore, there is an urgent need to investigate new drugs. In this review, we explore the mechanism of action and signaling pathways of MMP-9 in different tissues and organs, hoping to provide some ideas for developing safer and more effective biologics.


Assuntos
Metaloproteinase 9 da Matriz , Metaloproteinases da Matriz , Humanos , Metaloproteinase 9 da Matriz/metabolismo , Fibrose , Metaloproteinases da Matriz/metabolismo , Inibidores Teciduais de Metaloproteinases/metabolismo , Inflamação/metabolismo , Matriz Extracelular/metabolismo , Metaloproteinase 3 da Matriz/metabolismo , Inibidores de Metaloproteinases de Matriz
6.
J Ethnopharmacol ; 324: 117763, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38253274

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Sri Lankan traditional medicine uses Vernonia zeylanica and Mallotus repandus broadly for the treatment of a multitude of disease conditions, including wound healing. AIM OF THE STUDY: We aimed to scientifically validate the safety and efficacy of wound healing of an aqueous distillate of Vernonia zeylanica and Mallotus repandus (ADVM) mature leaves, tested on primary human dermal fibroblasts. MATERIALS AND METHODS: Human dermal fibroblasts isolated from clinical waste from circumcision surgery were characterized by flowcytometry and trilineage differentiation. The MTT dye reduction assay, and the ex vivo wound healing scratch assay established wound healing properties of ADVM using the primary human dermal fibroblast cell line. Upregulation of genes associated with wound healing (MMP3, COL3A1, TGFB1, FGF2) were confirmed by RT qPCR. GC-MS chromatography evaluated the phytochemical composition of ADVM. RESULTS: Compared to the synthetic stimulant, ß fibroblast growth factor, ADVM at 0.25% concentration on the primary dermal fibroblast cell line exhibited significant ex vivo, (i) 1.7-fold % cell viability (178.7% vs 304.3 %, p < 0.001), (ii) twofold greater % wound closure (%WC) potential (47.74% vs 80.11%, p < 0.001), and (iii) higher rate of % WC (3.251 vs 3.456 % WC/h, p < 0.05), sans cyto-genotoxicity. Up regulated expression of FGF2, TGFB1, COL3A1 and MMP3, genes associated with wound healing, confirmed effective stimulation of pathways of the three overlapping phases of wound healing (P < 0.05). GC-MS profile of ADVM characterized four methyl esters, which may be posited as wound healing phytochemicals. CONCLUSIONS: Exceeding traditional medicine claims, the exvivo demonstration of rapid skin regeneration, reiterated by upregulated expression of genes related to wound healing pathways, sans cytotoxicity, propounds ADVM, cued from traditional medicine, as a potential safe and effective natural stimulant for rapid wound-healing. Additionally, it may serve as an effective proliferative stimulant of dermal fibroblasts for cell therapy, with potential in reparative and regenerative therapy of skin disorders.


Assuntos
Mallotus (Planta) , Vernonia , Masculino , Humanos , Metaloproteinase 3 da Matriz/metabolismo , Fator 2 de Crescimento de Fibroblastos/metabolismo , Extratos Vegetais/química , Cicatrização , Pele , Medicina Tradicional , Fibroblastos
7.
Biochem Biophys Res Commun ; 691: 149315, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38043198

RESUMO

OBJECT: To clarify the involvement of clock genes in the production of inflammatory mediators from RA-FLS, we examined the role of Bmal1, one of the master clock genes. METHODS: RA-FLSs were stimulated with IL-1ß (0, 20 ng/mL), IL-6 (0, 20 ng/mL), IL-17 (0, 20 ng/mL), TNF-α (0, 20 ng/mL) or IFN-γ (0, 20 ng/mL) to examine the expression of Bmal1, MMP-3, CCL2, IL-6, IL-7 and IL-15 by qPCR and immunofluorescence staining. After silencing Bmal1, RA-FLSs were stimulated with IL-1ß (0, 20 ng/mL), TNF-α (0, 20 ng/mL) or IFN-γ (0, 20 ng/mL) to examine the expressions of inflammatory mediators; MMP-3, CCL2, IL-6 and IL-15 by qPCR, ELISA and immunofluorescence staining. RESULTS: Bmal1 expressions were increased by IL-1ß, TNF-α and IFN-γ stimulations. Under stimulations with TNF-α, IL-1ß, and IFN-γ, mRNA and protein expressions of MMP-3, CCL2 and IL-6 were suppressed by siBmal1. CONCLUSION: Results indicate that Bmal1 contributes the production of MMP-3, CCL2, and IL-6 from RA-FLS, implying Bmal1 is involved in the pathogenesis of RA by regulating the inflammation.


Assuntos
Artrite Reumatoide , Sinoviócitos , Humanos , Sinoviócitos/metabolismo , Membrana Sinovial/metabolismo , Interleucina-15/metabolismo , Metaloproteinase 3 da Matriz/genética , Metaloproteinase 3 da Matriz/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Mediadores da Inflamação/metabolismo , Artrite Reumatoide/patologia , Fibroblastos/metabolismo , Células Cultivadas
8.
J Med Virol ; 96(1): e29335, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38149454

RESUMO

Oncolytic virotherapy is a promising therapeutic approach for glioblastoma (GBM) treatment, although the outcomes are partially satisfactory. Hence, more effective strategies are needed urgently to modify therapeutic viruses to enhance their efficiency and safety in killing tumor cells and improve the survival rate of GBM patients. This study generated a new-generation oncolytic adenovirus Ad5 KT-E1A-IL-15 (TS-2021) and evaluated its antitumor efficacy. Ex vivo analyses revealed Ki67 and TGF-ß2 co-localized in GBM cells. In addition, TS-2021 selectively replicated in GBM cells, which was dependent on the expression of Ki67 and TGF-ß2. The immunocompetent mice model of GBM demonstrated the in vivo efficacy of TS-2021 by inhibiting tumor growth and improving survival proficiently. Notably, TS-2021 effectively reduced MMP3 expression by inactivating the MKK4/JNK pathway, thereby reducing tumor invasiveness. Altogether, the findings of the present study highlight that TS-2021 can effectively target GBM cells expressing high levels of Ki67 and TGF-ß2, exerting potent antitumor effects. Additionally, it can improve efficacy and suppress tumor invasiveness by inhibiting the MKK4/JNK/MMP3 pathway. Thus our study demonstrates the efficiency of the novel TS-2021 in the mouse model and provides a potential therapeutic option for patients with GBM.


Assuntos
Infecções por Adenoviridae , Glioblastoma , Animais , Camundongos , Humanos , Adenoviridae/genética , Glioblastoma/terapia , Glioblastoma/genética , Glioblastoma/patologia , Regiões 5' não Traduzidas , Antígeno Ki-67/genética , Antígeno Ki-67/metabolismo , Metaloproteinase 3 da Matriz/metabolismo , Fator de Crescimento Transformador beta2/genética , Fator de Crescimento Transformador beta2/metabolismo , Interleucina-15/metabolismo , Linhagem Celular Tumoral
9.
Chem Biol Interact ; 388: 110835, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38122922

RESUMO

Osteoarthritis (OA) is a common joint degenerative disease, and chondrocyte injury is the main pathological and physiological change. Ruscogenin (Rus), a bioactive compound isolated from Radix Ophiopogon japonicus, exhibits various pharmacological effects. The aim of this research was to test the role and mechanism of Rus on OA both in vivo and in vitro. Destabilized medial meniscus (DMM)-induced OA model was established in vivo and IL-1ß-stimulated mouse chondrocytes was used to explore the role of Rus on OA in vitro. In vivo, Rus exhibited protective effects against DMM-induced OA model. Rus could inhibit MMP1 and MMP3 expression in OA mice. In vitro, IL-1ß-induced inflammation and degradation of extracellular matrix were inhibited by Rus, as confirmed by the inhibition of PGE2, NO, MMP1, and MMP3 by Rus. Also, IL-1ß-induced ferroptosis was suppressed by Rus, as confirmed by the inhibition of MDA, iron, and ROS, as well as the upregulation of GSH, GPX4, Ferritin, Nrf2, and SLC7A11 expression induced by Rus. Furthermore, the suppression of Rus on IL-1ß-induced inflammation, MMPs production, and ferroptosis were reversed when Nrf2 was knockdown. In conclusion, Rus attenuated OA progression through inhibiting chondrocyte ferroptosis via Nrf2/SLC7A11/GPX4 signaling pathway.


Assuntos
Ferroptose , Osteoartrite , Espirostanos , Animais , Camundongos , Cartilagem/efeitos dos fármacos , Cartilagem/metabolismo , Cartilagem/patologia , Condrócitos/efeitos dos fármacos , Ferroptose/efeitos dos fármacos , Inflamação/metabolismo , Interleucina-1beta/metabolismo , Metaloproteinase 1 da Matriz/metabolismo , Metaloproteinase 3 da Matriz/genética , Metaloproteinase 3 da Matriz/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Osteoartrite/tratamento farmacológico , Osteoartrite/metabolismo , Transdução de Sinais
10.
Int J Mol Sci ; 24(24)2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38139186

RESUMO

Fisetin is a flavonoid found in plants and has been reported to be effective in various human diseases. However, the effective mechanisms of ultraviolet-A (UVA)-mediated skin damage are not yet clear. In this study, we investigated the protective mechanisms of fisetin regarding UVA-induced human dermal fibroblasts (HDFs) and human epidermal keratinocytes (HEKs) damages. Fisetin showed a cytoprotective effect against UVA irradiation and suppressed matrix metalloproteinases (MMPs), MMP-1, and MMP-3 expression. In addition, fisetin was rescued, which decreased mRNA levels of pro-inflammatory cytokines, reactive oxygen species production, and the downregulation of MAPK/AP-1 related protein and NADPH oxidase (NOX) mRNA levels. Furthermore, UVA-induced MMP-1 and MMP-3 were effectively inhibited by siRNAs to NOX 1 to 5 in HDFs and HEKs. These results indicate that fisetin suppresses UVA-induced damage through the NOX/ROS/MAPK pathway in HDFs and HEKs.


Assuntos
Metaloproteinase 1 da Matriz , Metaloproteinase 3 da Matriz , Humanos , Espécies Reativas de Oxigênio/metabolismo , Metaloproteinase 1 da Matriz/metabolismo , Metaloproteinase 3 da Matriz/genética , Metaloproteinase 3 da Matriz/metabolismo , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Células Cultivadas , Pele/metabolismo , Queratinócitos/metabolismo , Fibroblastos/metabolismo , RNA Mensageiro/metabolismo , Raios Ultravioleta/efeitos adversos
11.
Zhongguo Zhong Yao Za Zhi ; 48(21): 5838-5850, 2023 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-38114180

RESUMO

Jiming Powder is a traditional ancient prescription with good therapeutic effect in the treatment of heart failure, but its mechanism lacks further exploration. In this study, a mouse model of coronary artery ligation was used to evaluate the effect and mechanism of Jiming Powder on myocardial fibrosis in mice with myocardial infarction. The study constructed a mouse model of heart failure after myocardial infarction using the method of left anterior descending coronary artery ligation. The efficacy of Jiming Powder was evaluated from multiple angles, including ultrasound imaging, hematoxylin-eosin(HE) staining, Masson staining, Sirius Red staining, and serum myocardial enzyme spectrum detection. Western blot analysis was performed to detect key proteins involved in ventricular remodeling, including transforming growth factor-ß1(TGF-ß1), α-smooth muscle actin(α-SMA), wingless-type MMTV integration site family member 3a(Wnt3a), ß-catenin, matrix metallopeptidase 2(MMP2), matrix metallopeptidase 3(MMP3), TIMP metallopeptidase inhibitor 1(TIMP1), and TIMP metallopeptidase inhibitor 2(TIMP2). The results showed that compared with the model group, the high and low-dose Jiming Powder significantly reduced the left ventricular internal diameter in systole(LVID;s) and diastole(LVID;d), increased the left ventricular ejection fraction(LVEF) and left ventricular fractional shortening(LVFS), effectively improved cardiac function in mice after myocardial infarction, and effectively reduced the levels of myocardial injury markers such as creatine kinase(CK), creatine kinase isoenzyme(CK-MB), and lactic dehydrogenase(LDH), thus protecting ischemic myocardium. HE staining showed that Jiming Powder could attenuate myocardial inflammatory cell infiltration after myocardial infarction. Masson and Sirius Red staining demonstrated that Jiming Powder effectively inhibited myocardial fibrosis, reduced the collagen Ⅰ/Ⅲ ratio in myocardial tissues, and improved collagen remodeling after myocardial infarction. Western blot results showed that Jiming Powder reduced the expression of TGF-ß1, α-SMA, Wnt3a, and ß-catenin, decreased the levels of MMP2, MMP3, and TIMP2, and increased the level of TIMP1, suggesting its role in inhibiting cardiac fibroblast transformation, reducing extracellular matrix metabolism in myocardial cells, and lowering collagen Ⅰ and α-SMA content, thus exerting an anti-myocardial fibrosis effect after myocardial infarction. This study revealed the role of Jiming Powder in improving ventricular remodeling and treating myocardial infarction, laying the foundation for further research on the pharmacological effect of Jiming Powder.


Assuntos
Insuficiência Cardíaca , Infarto do Miocárdio , Camundongos , Animais , Fator de Crescimento Transformador beta1/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , beta Catenina/metabolismo , Metaloproteinase 3 da Matriz/metabolismo , Metaloproteinase 3 da Matriz/uso terapêutico , Pós , Remodelação Ventricular , Volume Sistólico , Função Ventricular Esquerda , Infarto do Miocárdio/tratamento farmacológico , Miocárdio/patologia , Insuficiência Cardíaca/metabolismo , Colágeno/metabolismo , Creatina Quinase , Fibrose
12.
Int J Mol Sci ; 24(21)2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37958960

RESUMO

In present study, icariin (ICA)/tannic acid (TA)-nanodiamonds (NDs) were prepared as follows. ICA was anchored to ND surfaces with absorbed TA (ICA/TA-NDs) and we evaluated their in vitro anti-inflammatory effects on lipopolysaccharide (LPS)-activated macrophages and in vivo cartilage protective effects on a rat model of monosodium iodoacetate (MIA)-induced osteoarthritis (OA). The ICA/TA-NDs showed prolonged release of ICA from the NDs for up to 28 days in a sustained manner. ICA/TA-NDs inhibited the mRNA levels of pro-inflammatory elements, including matrix metalloproteinases-3 (MMP-3), cyclooxygenase-2 (COX-2), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α), and increased the mRNA levels of anti-inflammatory factors (i.e., IL-4 and IL-10) in LPS-activated RAW 264.7 macrophages. Animal studies exhibited that intra-articular injection of ICA/TA-NDs notably suppressed levels of IL-6, MMP-3, and TNF-α and induced level of IL-10 in serum of MIA-induced OA rat models in a dose-dependent manner. Furthermore, these noticeable anti-inflammatory effects of ICA/TA-NDs remarkably contributed to the protection of the progression of MIA-induced OA and cartilage degradation, as exhibited by micro-computed tomography (micro-CT), gross findings, and histological investigations. Accordingly, in vitro and in vivo findings suggest that the prolonged ICA delivery of ICA/TA-NDs possesses an excellent latent to improve inflammation as well as defend against cartilage disorder in OA.


Assuntos
Cartilagem Articular , Nanodiamantes , Osteoartrite , Ratos , Animais , Interleucina-10/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Metaloproteinase 3 da Matriz/genética , Metaloproteinase 3 da Matriz/metabolismo , Interleucina-6/metabolismo , Lipopolissacarídeos/farmacologia , Microtomografia por Raio-X , Cartilagem Articular/metabolismo , Osteoartrite/metabolismo , Anti-Inflamatórios/farmacologia , Ácido Iodoacético/efeitos adversos , RNA Mensageiro/metabolismo , Modelos Animais de Doenças
13.
Foot Ankle Surg ; 29(8): 611-615, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37953101

RESUMO

BACKGROUND: Recently, herbal medicine has become alternative in management of gout. Our aim is to assess effectiveness of purple sweet potato extract in gout. METHOD: In vivo study with randomized posttest only control group design. Purple sweet potato extract administered to 16 Wistar rats with MSU-induced gout. Independent t-test for analyzing interleukin-1 ß (IL-1ß), matrix metalloproteinase-3 (MMP-3), cartilage oligomeric matrix protein (COMP), malondialdehyde (MDA), and number of chondrocytes results. RESULTS: Decreased level of IL-1ß (3.81 ± 1.54 ng/mL vs. 2.55 ± 0.59 ng/mL, p = 0.04), MDA (5.04 ± 1.02 ng/mL vs. 2.27 ± 0.57 ng/mL, p = 0.04), MMP-3 (5.66 ± 1.02 ng/mL vs. 3.84 ± 1.37 ng/mL, p = 0.01) COMP (21.01 ± 3.57 ng/mL vs. 17.27 ± 2.60 ng/mL, p = 0.03), and increasing chondrocytes (35.17 ± 12.35 lp vs. 48.56 ± 7.17 lp, p = 0.02). CONCLUSION: Purple sweet potato extract with anthocyanin inhibits inflammation and cartilage degeneration in gout. LEVEL OF EVIDENCE: Level 1.


Assuntos
Gota , Ipomoea batatas , Ratos , Animais , Humanos , Ratos Wistar , Ipomoea batatas/metabolismo , Metaloproteinase 3 da Matriz/metabolismo , Condrócitos , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Extratos Vegetais/metabolismo
14.
Protein Sci ; 32(12): e4795, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37807423

RESUMO

Overexpression of specific matrix metalloproteinases (MMPs) has a key role in development of several diseases, such as cancer, neurological disorders, and cardiovascular diseases due to their critical role in degradation and remodeling of the extracellular matrix (ECM). Tissue inhibitors of metalloproteinases (TIMPs), a family of four in humans, are endogenous inhibitors of MMPs. TIMPs have a high level of sequence and structure homology, with a broad range of binding and inhibition to the family of MMPs. It is important to identify the key motifs of TIMPs responsible for inhibition of MMPs to develop efficient therapeutics targeting specific MMPs. We used DNA shuffling between the human TIMP family to generate a minimal TIMP hybrid library in yeast to identify the dominant minimal MMP inhibitory regions. The minimal TIMP variants screened toward MMP-3 and MMP-9 using fluorescent-activated cell sorting (FACS). Interestingly, several minimal TIMP variants selected after screening toward MMP-3cd or MMP-9cd, with lengths as short as 20 amino acids, maintained or improved binding to MMP-3 and MMP-9. The TIMP-MMP binding dissociation constant (KD ), in the nM range, and MMP inhibition constants (Ki ), in the pM range, of these minimal TIMP variants were similar to the N-terminal domain of TIMP-1 on the yeast surface and in solution indicating the potency of these minimal variants as MMP inhibitors. We further used molecular modeling simulation, and molecular docking of the minimal TIMP variants in complex with MMP-3cd to understand the binding and inhibition mechanism of these variants.


Assuntos
Metaloproteinase 3 da Matriz , Metaloproteinase 9 da Matriz , Humanos , Metaloproteinase 3 da Matriz/genética , Metaloproteinase 3 da Matriz/química , Metaloproteinase 3 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Simulação de Acoplamento Molecular , Inibidores Teciduais de Metaloproteinases/genética , Inibidores Teciduais de Metaloproteinases/química , Inibidores Teciduais de Metaloproteinases/metabolismo
15.
Int J Mol Sci ; 24(20)2023 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-37895087

RESUMO

Pomegranate has shown a favorable effect on gingivitis/periodontitis, but the mechanisms involved are poorly understood. The aim of this study was to test the effect of pomegranate peel extract (PoPEx) on gingiva-derived mesenchymal stromal cells (GMSCs) under physiological and inflammatory conditions. GMSC lines from healthy (H) and periodontitis (P) gingiva (n = 3 of each) were established. The lines were treated with two non-toxic concentrations of PoPEX (low-10; high-40 µg/mL), with or without additional lipopolysaccharide (LPS) stimulation. Twenty-four genes in GMSCs involved in different functions were examined using real-time polymerase chain reaction (RT-PCR). PoPEx (mostly at higher concentrations) inhibited the basal expression of IL-6, MCP-1, GRO-α, RANTES, IP-10, HIF-1α, SDF-1, and HGF but increased the expression of IL-8, TLR3, TGF-ß, TGF-ß/LAP ratio, IDO-1, and IGFB4 genes in H-GMSCs. PoPEx increased IL-6, RANTES, MMP3, and BMP2 but inhibited TLR2 and GRO-α gene expression in P-GMSCs. LPS upregulated genes for proinflammatory cytokines and chemokines, tissue regeneration/repair (MMP3, IGFBP4, HGF), and immunomodulation (IP-10, RANTES, IDO-1, TLR3, COX-2), more strongly in P-GMSCs. PoPEx also potentiated most genes' expression in LPS-stimulated P-GMSCs, including upregulation of osteoblastic genes (RUNX2, BMP2, COL1A1, and OPG), simultaneously inhibiting cell proliferation. In conclusion, the modulatory effects of PoPEx on gene expression in GMSCs are complex and dependent on applied concentrations, GMSC type, and LPS stimulation. Generally, the effect is more pronounced in inflammation-simulating conditions.


Assuntos
Células-Tronco Mesenquimais , Periodontite , Punica granatum , Humanos , Gengiva/metabolismo , Metaloproteinase 3 da Matriz/metabolismo , Interleucina-6/metabolismo , Quimiocina CXCL10/metabolismo , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , Receptor 3 Toll-Like/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Periodontite/metabolismo , Células-Tronco Mesenquimais/metabolismo , Expressão Gênica , Diferenciação Celular
16.
Zhongguo Gu Shang ; 36(10): 982-9, 2023 Oct 25.
Artigo em Chinês | MEDLINE | ID: mdl-37881933

RESUMO

OBJECTIVE: To investigate whether Salvianolic acid A (SAA) can restore cartilage endplate cell degeneration of intervertebral discs and to identify the mechanism via regulation of micro-RNA. METHODS: Cartilage endplate cells were isolated from lumbar intervertebral disc surgical samples and were treated with serum containing a series of concentrations of SAA (2, 5, and 10 ?M) for 24, 48, and 72 h to identify a proper dose and treatment time of SAA. The effect SAA on interlenkin-1ß (IL-1ß)-induced extracellular matrix degradation of cartilage endplate cells were analyzed by Alcian blue staining and assessment of the expression levels of ADAMTS-5, MMP3 and Col2a1. Further, the potential target miRNAs were preliminarily screened by micro-RNA sequencing combining qRT-PCR and Western blot, and then, the miRNAs mimics and inhibitors were used to verify the regulatory effect of SAA on potential target miRNAs. RESULTS: The 10 µM SAA treatment for 48 h significantly enhanced the viability of cartilage endplate cells, and increased Col2a1 expression and glycosaminoglycan accumulation that were repressed by IL-1ß, and reduced the effect of IL-1ß on ADAMTS-5, and MMP3. Screening analysis based on micro-RNA sequencing and Venny analysis identified the downstream micro-RNAs, including miR-940 and miR-576-5p. Then, the miR-940-mimic or miR-576-5p-mimic were transfected into CEPCs. Compared with the SAA group, the expression of ADAMTS-5 and MMP3 increased significantly and the expression of COL2A1 obviously decreased after overexpression of miR-940 or miR-576-5p in CEPCs. CONCLUSION: Salvianolic acid A attenuated the IL-1ß-induced extracellular matrix degradation of cartilage endplate cells by targeting regulate the miR-940 and the miR-576-5p.


Assuntos
Condrócitos , Metaloproteinase 3 da Matriz , MicroRNAs , Humanos , Apoptose , Cartilagem/metabolismo , Condrócitos/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Metaloproteinase 3 da Matriz/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo
17.
Sci Rep ; 13(1): 18566, 2023 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-37903851

RESUMO

The premetastatic niche hypothesis proposes an active priming of the metastatic site by factors secreted from the primary tumor prior to the arrival of the first cancer cells. We investigated several extracellular matrix (ECM) structural proteins, ECM degrading enzymes, and ECM processing proteins involved in the ECM remodeling of the premetastatic niche. Our in vitro model consisted of lung fibroblasts, which were exposed to factors secreted by nonmalignant breast epithelial cells, nonmetastatic breast cancer cells, or metastatic breast cancer cells. We assessed ECM remodeling in vivo in premetastatic lungs of female mice growing orthotopic primary breast tumor xenografts, as compared to lungs of control mice without tumors. Premetastatic lungs contained significantly upregulated Collagen (Col) Col4A5, matrix metalloproteinases (MMPs) MMP9 and MMP14, and decreased levels of MMP13 and lysyl oxidase (LOX) as compared to control lungs. These in vivo findings were consistent with several of our in vitro cell culture findings, which showed elevated Col14A1, Col4A5, glypican-1 (GPC1) and decreased Col5A1 and Col15A1 for ECM structural proteins, increased MMP2, MMP3, and MMP14 for ECM degrading enzymes, and decreased LOX, LOXL2, and prolyl 4-hydroxylase alpha-1 (P4HA1) for ECM processing proteins in lung fibroblasts conditioned with metastatic breast cancer cell media as compared to control. Taken together, our data show that premetastatic priming of lungs by primary breast tumors resulted in significant ECM remodeling which could facilitate metastasis by increasing interstitial fibrillar collagens and ECM stiffness (Col14A1), disruptions of basement membranes (Col4A5), and formation of leaky blood vessels (MMP2, MMP3, MMP9, and MMP14) to promote metastasis.


Assuntos
Neoplasias da Mama , Neoplasias Mamárias Animais , Humanos , Feminino , Camundongos , Animais , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Metaloproteinase 14 da Matriz/metabolismo , Metaloproteinase 3 da Matriz/metabolismo , Pulmão/patologia , Matriz Extracelular/metabolismo , Neoplasias Mamárias Animais/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Neoplasias da Mama/patologia
18.
Int J Mol Sci ; 24(19)2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37834154

RESUMO

Glioblastoma multiforme (GBM) is a highly aggressive malignancy and represents the most common brain tumor in adults. To better understand its biology for new and effective therapies, we examined the role of GDP-mannose pyrophosphorylase B (GMPPB), a key unit of the GDP-mannose pyrophosphorylase (GDP-MP) that catalyzes the formation of GDP-mannose. Impaired GMPPB function will reduce the amount of GDP-mannose available for O-mannosylation. Abnormal O-mannosylation of alpha dystroglycan (α-DG) has been reported to be involved in cancer metastasis and arenavirus entry. Here, we found that GMPPB is highly expressed in a panel of GBM cell lines and clinical samples and that expression of GMPPB is positively correlated with the WHO grade of gliomas. Additionally, expression of GMPPB was negatively correlated with the prognosis of GBM patients. We demonstrate that silencing GMPPB inhibits the proliferation, migration, and invasion of GBM cells both in vitro and in vivo and that overexpression of GMPPB exhibits the opposite effects. Consequently, targeting GMPPB in GBM cells results in impaired GBM tumor growth and invasion. Finally, we identify that the Hippo/MMP3 axis is essential for GMPPB-promoted GBM aggressiveness. These findings indicate that GMPPB represents a potential novel target for GBM treatment.


Assuntos
Neoplasias Encefálicas , Inativação Gênica , Glioblastoma , Adulto , Humanos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Glioblastoma/metabolismo , Manose , Metaloproteinase 3 da Matriz/metabolismo
19.
Tissue Eng Regen Med ; 20(7): 1161-1172, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37823991

RESUMO

BACKGROUND: Injectable Platelet Rich Fibrin (I-PRF) and Advanced-Platelet Rich Fibrin (A-PRF) are autologous materials derived from patients' blood and employed in periodontal regenerative surgery. Although I-PRF and A-PRF have different characteristics, their biological effects on gingival tissue fibroblasts remain unclear. This research aims to compare the in vitro capacity in inducing gene expression and proliferation of human gingival fibroblasts between A-PRF and I-PRF. METHODS: Human donors undergoing dental implant surgery were sampled for normal human gingival fibroblasts (NHGFCs), followed by preparing A-PRF and I-PRF membranes. Enzyme-linked immunosorbent assay (ELISA) kit was used to assess the release of platelet-derived growth factor-AA (PDGF-AA), transforming growth factor-beta1 (TGF- ß1), and insulin growth factor-1 (IGF-1) at different periods. Cell viability and proliferation of A-PRF and I-PRF were compared using CCK-8 assay. The impacts of platelet concentration on human gingival fibroblast cells (HGFCs) were evaluated by quantifying the level or amount of phosphorylated extracellular signal-regulated protein kinase (p-ERK), and Matrix metalloproteinases (MMPs), MMP-1 and MMP-3. The effects of PRF on aged human gingival fibroblast cells were examined retrospectively. RESULTS: Overall, A-PRF demonstrated a higher release of TGF-B1 and PDGF-AA, while I-PRF reflected higher levels of IGF-1. A significantly higher level of cell proliferation was induced by higher cell proliferation by A-PRF and I-PRF. Additionally, in comparison to I-PRF, the expression of ERK phosphorylation and MMP-1 &MMP-3 in HGFCs was demonstrated by I-PRF and A-PRF. The increase in A-PRF was time-dependent (p < 0.05). CONCLUSION: Both I-PRF and A-PRF induced a stimulatory biological impact on the proliferation of human gingiva fibroblasts, with the latter demonstrating better capacity in facilitating the release of different growth factors. A-PRF also induced higher gene expression of p-ERK, MMP-1 &MMP-3, and the proliferation of fibroblasts.


Assuntos
Fibrina Rica em Plaquetas , Humanos , Idoso , Fibrina Rica em Plaquetas/metabolismo , Metaloproteinase 1 da Matriz/metabolismo , Metaloproteinase 3 da Matriz/metabolismo , Gengiva , Fator de Crescimento Insulin-Like I/metabolismo , Estudos Retrospectivos , Fibroblastos/metabolismo , Proliferação de Células , Diferenciação Celular
20.
Altern Ther Health Med ; 29(8): 680-688, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37678876

RESUMO

Context: In rheumatoid arthritis (RA), hyperproliferative fibroblast-like synoviocytes (FLS) can secrete a variety of tissue hydrolases, such as matrix metalloproteinases (MMPs), causing the destruction of chondrocytes. Mesenchymal stem cells (MSCs) can directly affect FLS through extracellular vesicles (EVs). Interleukin-27 (IL-27) is a pleiotropic immune regulator frequently overexpressed in RA. Objective: The study intended to examine the effects of IL-27-induced exosomes from bone-marrow mesenchymal stem cells (BM-MSCs) and to determine if they promote the secretion of MMP3 in synovial cells. Design: The research team performed a genetic study. Setting: The study took place at the First Affiliated Hospital of Hainan Medical University in Haikou City, Hainan, China. Outcome Measures: The research team: (1) determined if IL-27 expression had occurred in the synovial fluid; (2) co-cultured IL-27-induced MSCs with FLS to detect the expression of MMP3 in the FLS; (3) Under IL-27 induction, MSC-derived exosomes with IL-27R knockdown were collected to detect the expression of microRNAs(miRNAs) associated with RA; (4) screened the miRNAs to determine the most significant differences in expression; (5) determined the miRNA target genes in arthritis, using Western blot (WB) and qRT-PCR; and (6) Dual luciferase and ChIP experiments confirm regulation of MMP3 by L3MBTL4. Results: IL-27 was highly expressed in RA, and the IL-27-induced, MSC-derived exosomes promoted the expression of MMP3 in FLS. The IL-27-induced MSC-derived exosomes significantly upregulated the expression of miR-206-3p, and the miR-206-3p target, miR-206/ lethal(3) malignant brain tumor-like protein 4 (L3MBTL4), regulated the MMP3 transcription. The IL-27-induced, MSC-derived exosomes promoted MMP3 expression in the FLS through the miR-206-3p/L3MBTL4 axis, thereby promoting chondrocyte degradation and aggravating RA. Conclusions: IL-27 can induce the expression of miR-206 in MSCs, and miR-206 can be transported into FLS through MSC-EVs to promote FLS migration and MMP3 expression and aggravate articular cartilage damage. Patients with RA who have a high IL-27 expression may not be suitable to receive treatment with MSCs, and clinicians can use MSCs that knock down or delete IL-27R to treat RA patients who have a high IL-27 expression.


Assuntos
Artrite Reumatoide , Exossomos , Interleucina-27 , MicroRNAs , Humanos , Interleucina-27/metabolismo , Exossomos/genética , Exossomos/metabolismo , Exossomos/patologia , Metaloproteinase 3 da Matriz/genética , Metaloproteinase 3 da Matriz/metabolismo , MicroRNAs/genética , Fibroblastos/metabolismo , Fibroblastos/patologia , Proliferação de Células
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...